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Monte Carlo lattice simulations of the elastic behaviour of
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A pairwise additive potential, which approximately reproduces the free energy density for the
elastic deformations of a nematic liquid crystal, originally proposed by Gruhn and Hess, has
been investigated by simulating the three Fréedericksz transitions as well as that of the
Schadt–Helfrich cell. The pair potential depends on the three elastic constants K1 , K2 and
K3 for the splay, twist and bend deformations, respectively. The results of the simulations are
compared with the analytical solutions obtained from continuum theory in order to test the
accuracy of the model potential at a quantitative level. This comparison is also made for
diŒerent temperatures to explore the in� uence of director � uctuations on the elastic behaviour.

1. Introduction Zocher–Oseen–Frank expression [1]
The elastic behaviour of nematic liquid crystals is of

particular interest for technological applications as in
Y 5

1
2

{K1 ( = ¯ n)2 1 K2[n ¯ ( = Ö n)]2 1 K3[n Ö ( = Ö n)]2},
nematic liquid crystals displays (LCDs), in which the
transmission of light is determined by the director distri-

(1)
bution; this, in turn, is associated with the structure
having the minimum free energy. In addition, the relative

where K1 , K2 and K3 are the elastic constants for the
stability and structure of disclinations is in� uenced by

splay, twist and bend deformations, respectively. For
the elastic properties of the sample [1, 2]. Computer

simple geometries and boundary conditions, equation (1)
simulation studies as well as theoretical investigations

can be solved analytically [1, 2]. However, in most cases
have been used to elucidate the elastic behaviour of

of practical interest it is necessary to resort to numerical
nematic liquid crystals in LCDs [3–5], liquid crystal

integration. Usually the director distribution is calcu-
droplets [6, 7], capillary tubes [8–10], hybrid nematic

lated by minimizing the free energy numerically, by
� lms [11] and polymeric liquid crystals [12]. Computer

� nite diŒerence methods, on a discrete grid of points
aided techniques have also been employed to study

[3, 4, 7, 8, 14]. Alternatively a Monte Carlo approach
the kinetics of the formation of disclinations and their

has been implemented. In some cases the method is
evolution [3, 13] as well as for classical experiments

used to minimize the free energy given by equation (1)
such as the Fréedericksz transitions and that of the

[9, 12, 13] and the Metropolis algorithm is employed
Schadt–Helfrich cell [12, 14].

only to oŒer the system a way to escape from becoming
The elastic free energy density for a nematic phase

trapped in local minima. In other cases, an interaction
can be expanded in powers of the gradient of the

potential between neighbouring sites is used [5, 6, 10, 11].
director, n; retaining only the quadratic terms gives the

For example, Zannoni and coworkers, have simulated
LCDs [5], droplets [6] and hybrid nematic � lms [11]
by using a Metropolis Monte Carlo algorithm for a*Author for correspondence; e-mail: gl@soton.ac.uk
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770 P. J. Le Masurier et al.

Lebwohl–Lasher model [15] and at a scaled temper- coe� cients in the potential and the elastic constants has
been given by Romano [18]. Its formulation also diŒersature of a few tenths of the scaled transition temperature,

T *
NI , of the model system. In this model the objects are from the original one [9] by numerical multiplicative

and additive constants chosen in order to have the iso-� xed on a cubic lattice and two neighbouring objects, i
and j, interact through an orientation dependent potential tropic average of the potential equal to zero. It is of con-

siderable interest to investigate the use of this potentialWLL
ij

given by
model with typical elastic constants in order to test its

WLL
ij 5 Õ eP2 (cos b

ij
), (2 )

reliability in describing complex director distributions
such as those in certain LCDs, or in the proximity ofwhere b

ij
is the angle between the symmetry axes of

the two objects and e is the energy scaling parameter; the disclinations. It is the aim of this work to test the
quantitative predictions of the model potential for someinteraction is extended only to nearest neighbours on

the cubic lattice. In the original development of the director distributions for which analytical solutions exist
but in the absence of director � uctuations. To do so weLebwohl–Lasher model [15] the interacting objects were

taken to be molecules and so the model was used to have simulated the three Fréedericksz transitions as well
as that for the Schadt–Helfrich cell when an externalinvestigate properties such as the nematic–isotropic

transition temperature and the orientational order at the � eld is applied to the nematic sample. The dependence
on the thickness of the cell has been studied as well asmolecular level. More recently it has been realized that

there is an alternative interpretation of the Lebwohl– the eŒect of varying the scaled temperature . We shall see
that the model potential which we are using establishesLasher model in which the objects on the lattice sites

are taken to be directors. Then, provided the system is a correspondence between the scaled temperature used
in the Metropolis scheme and the size of the unit cell oflarge and the scaled temperature ( ; kB T /e) is well below

the nematic–isotropic transition, the simulations provide the lattice. This relation will be used to bridge the gap
between the molecular interpretation of the Lebwohl–a valuable way to study the macroscopic behaviour

of a nematic [5, 6, 11]. However, a limiting factor in the Lasher model and continuum theory, for which the
potential used here is an approximate representation.use of the Lebwohl–Lasher model to simulate the elastic

behaviour of liquid crystals, is the fact that the inter- The paper is organized as follows: in the next section
we present the model potential used for the simulations;action energy depends only on the relative orientation

of the two particles and so it is not possible to distinguish in Sec. 3 we give the details of the simulations, while in
Sec. 4 we present and discuss the results for the threebetween splay, twist and bend deformations. That is,

the model corresponds to the single elastic constant, or Fréedericksz experiments and the Schadt–Helfrich cell.
Finally, our conclusions are reported in Sec. 5.so-called spherical, approximation.

Bedford and Windle [10] have proposed an extension
of the Lebwohl–Lasher potential which allows a depend- 2. The pair potential

Following the procedure presented by Luckhurstence on the three elastic constants. However, there are
doubts about the gauge invariance of their potential [16]. and Romano in [16], we can expand the pair potential

between two directors on neighbouring sites j and k,Subsequently an alternative potential has been proposed
by Gruhn and Hess [9]. In their approach, a model representing the orientation of the directors in two

diŒerent points in space, in terms of a complete set ofpotential for a pairwise additive interaction between
directors, which approximately reproduces the elastic basis functions depending on the orientation of the two

directors n
j

and n
k

and the orientation of the vectorfree energy density of the system, is derived by mapping
equation (1) onto a suitable expansion of the interaction joining them, r. A suitable set of functions for such an

expansion are the S-functions S
Lj LkJ

(n
j
, n

k
, r) [19]. Thepotential. The space is discretized onto a cubic lattice,

each site representing a director, and the free energy of index L
j

refers to the j-th director, the index L
k

to
the k-th director and the index J to the inter-directorthe system is de� ned as the sum of pairwise additive

interactions between nearest neighbouring sites. This vector; J takes values from (L
j
1 L

k
) to |L

j
Õ L

k
|. It

can be shown that the S-functions depend only onprocedure will only give an approximate representation
of the elastic free energy since this is not pairwise the scalar invariants a

j 5 n
j
¯ r, a

k 5 n
k

¯ r, b
jk 5 n

j
¯ n

k
and

c
jk 5 n

j
¯ n

k
Ö r. When the total rank of the S-function,additive [9], as we assume for the model potential. The

system could then be investigated by means of a Monte L
j
1 L

k
1 J is even only a

j
, a

k
and b

jk
are involved and

the S-functions are invariant for an inversion of coordi-Carlo method, based on the usual Metropolis algorithm,
in which, now, the total free energy obtained as a sum nates. Consequently, the terms of even total rank are

the only ones needed to describe the interaction energyof the pair interactions plays the same role as the total
potential energy in a Monte Carlo simulation of a between neighbouring sites, due to the symmetry pro-

perties of the nematic phase for which n 5 Õ n. Themolecular system [17]. The relationship between the
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771Simulation of elastic behaviour of NL Cs

invariant c
jk

appears in S-functions of odd total rank orientation of two parallel directors. This requirement
and should be included if chiral eŒects need to be is essential if the potential given in equation (4) is to
described. We can, therefore, express the pair potential describe the elastic interaction between two directors,
between two neighbouring sites j and k as since only deviations from the ground state geometry

(uniform alignment of the director) give contributions to
W

jk
5 �

Lj LkJ

Q
Lj LkJ

S
Lj LkJ

(a
j
, a

k
, b

jk
), (3 ) the elastic energy. In contrast, if the model potential of

equation (4) is used to describe a molecular interaction
where the Q

Lj LkJ
are the coe� cients of the expansion, [18], such a requirement is not strictly necessary [16],

and the summation is restricted to terms with even total nor indeed is it physically realistic. It is worth noticing
rank. This expansion has the advantage that the powers that, by setting the three elastic constants to a common
of the scalar invariants appear in a systematic manner; value, K1 5 K2 5 K3 5 K, the potential is reduced to the
in addition it may be expected that the series is rapidly same form as in the Lebwohl–Lasher model. In addition
convergent. Such a pair potential can then be mapped we see that the energy parameter, e, in equation (2) is
onto the expression for the free energy density. Assuming just equal to LK; this de� nition is only needed if we
small displacements of the director, we can replace the seek to model the elastic behaviour so that on each site
gradients in equation (1) by � nite increments and by of the lattice there is a director, rather than a molecule.
considering some well-de� ned deformations, both in This relationship is helpful since it provides a link
equation (1) as well as in equation (3), it is possible to between the scaled temperature, T *, and the dimension
derive the relation between the coe� cients Q

Lj LkJ
and

of the unit cell:
the elastic constants. The procedure has been described
in detail in [16] and we report here only the � nal T * 5 kB T /e 5 kBT /LK. (6)
expression for the pair potential

It is of interest to estimate the order of magnitude of
W

jk 5 l[P2 (a
j
) 1 P2 (a

k
)] 1 mAa

j
a
k
b
jk

Õ
1
9B the scaled temperature, T *, which is needed for realistic

simulations of the elastic behaviour for a nematic phase.
1 nP2 (b

jk
) 1 r[P2 (a

j
) 1 P2 (a

k
)]P2 (b

jk
), (4 ) Assuming a unit cell of dimension, L, of 1 mm, a tem-

perature of 300 K and an average elastic constant of
where, for example, P2 (a

j
) is the second rank Legendre

1.0 Ö 10 Õ 12 N, gives a scaled temperature of 4.14 Ö 10 Õ 3.
polynomial. This form of the potential can be obtained

This should be compared with the scaled transition
after rearranging the explicit expansion in terms of the

temperature, T *
NI , of the Lebwohl–Lasher model which

S-functions, which is reported in the Appendix. It has,
is 1.1232 Ô 0.0001 [20]; clearly T * of 4.14 Ö 10 Õ 3 is

however, a more convenient form for coding into a
far removed from the temperature at which the system

program. The coe� cients of the expansion are related
becomes disordered. Alternatively, for a given temper-

to the elastic constants by [18]:
ature and elastic constant of the sample, increasing the
scaled temperature corresponds to reducing the size of

the unit cell of the lattice. The higher the scaled temper-

ature the larger are the orientational � uctuations of the
director associated with each site of the lattice. Of course,

for given values of the temperature and average elasticGl 5
1
3

L(2K1 Õ 3K2 1 K3 )

m 5 3L(K2 Õ K1 )

n 5
1

3
L(K1 Õ 3K2 Õ K3 )

r 5
1

3
L(K1 Õ K3 ),

(5 )
constant there is a limiting value of the scaled temper-
ature above which the size of the lattice cell becomes

comparable to the molecular dimension, and the inter-

pretation of the scaling parameter e as LK no longer
holds. That is, the use of the model potential to describe

the elastic behaviour of a nematic should no longerwhere L is the dimension of the unit cell of the cubic
be valid.lattice. This particular length scale enters the expressions

To describe the Fréedericksz transitions and thefor the expansion coe� cients because it is the separation
Schadt–Helfrich cell we need to include the interactionbetween neighbouring sites which determines the director
of the sample with an external � eld. This can be donegradients. Clearly the four expansion coe� cients cannot
by adding a second rank term to the energy for eachbe independent since there are only three elastic con-
site j:stants; in fact we can see from equation (5 ) that m is

equal to Õ 3(l 1 r). Indeed this relationship ensures that
the interaction energy W

jk
is independent of the absolute W

f
5 cP2 (cos b

j
), (7)
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772 P. J. Le Masurier et al.

where c is the strength parameter, which for a magnetic to the � eld, has been derived by Saupe [21]:
� eld is given by [2] B 5 Bc (2/p)P(a2, k) /(1 1 k sin2 dmax )1/2 (11)

c 5 Õ L3DxÄ B2 /2m0 . (8 ) for the splay and bend deformations, where

a2 5 k sin2 dmax /(1 1 k sin2 dmax ) (12)The factor L3 occurs here because the anisotropic

magnetic susceptibility DxÄ is a volume susceptibility and k2 5 (1 1 k) sin2 dmax /(1 1 k sin2 dmax ) (13)
we require the magnetic energy for each unit cell [2].

and P(a2, k) is the complete elliptic integral of the third
The total free energy of the system is then given by

kind. The parameter k is given by (K3 /K1 Õ 1) for a
splay transition and (K1 /K3 Õ 1) for a bend transition.

Y 5 1/2 �
N

j=1
�
6

i=1

W
ij

1 c �
N

j=1

P2 (cos b
j
), (9 ) Although the critical � eld for a Fréedericksz transition

depends only on the corresponding elastic constant (see
equation (10)) the deformation for � elds higher than Bcwhere N is the number of sites. In the Fréedericksz
is determined by both K1 and K3 . In contrast, the twistexperiments an external � eld is applied to a nematic
deformation does not involve any mixing with the twosample which is subject to certain boundary conditions, in
other fundamental deformations and the � eld is relatedorder to induce a deformation which depends on only one
to the maximum twist in the middle of the cell byof the three elastic constants. For the splay deformation

the sample is contained between two planar surfaces B 5 Bc (2/p)K(sin2 dmax ), (14)
which we take to be parallel to the xy plane; these are

where K (sin2 dmax ) is the complete elliptic integral of the
treated in order to favour uniform planar alignment (e.g.

� rst kind [21].
along the y direction) of the nematic director. An external

In the Schadt–Helfrich cell, on which twisted nematic
� eld is then applied perpendicular to these surfaces,

displays are based, the surfaces are also treated to favour
that is in the z direction, which induces a pure splay

a parallel alignment of the director, but they are rotated
deformation in the nematic sample. However, until the

by p/2 with respect to each other. Consequently in
� eld reaches a critical value, the sample remains with the

the absence of any � eld the director adopts a helical
director uniformly aligned parallel to the surfaces; then

structure. When the � eld is applied perpendicular to the
a second order transition occurs and the director deviates surfaces the induced deformation depends on a com-
from the unperturbed orientation, the largest deviation bination of the three elastic constants, in contrast to the
occurring in the middle of the cell. A similar experiment Fréedericksz transition. The critical value of the � eld,
can be performed to induce a pure twist deformation if for this transition, is given by [2]
the � eld is now applied perpendicular to the original

B2
c,SH 5 (p/d )2m0[K1 1 (K3 Õ 2K2 )/4]/DxÄ . (15)director orientation, but still in the plane de� ned by

the surfaces for the same boundary conditions as before, There is, however, no analytical expression for the
that is the � eld is applied along the x direction. Finally, deformation angle in the centre of the cell.
a pure bend deformation can be induced if the surfaces
are treated in order to favour homeotropic alignment 3. Simulation details
(perpendicular to the surfaces) and the � eld is applied The scaled potential used in the simulations is obtained
parallel to the surfaces. from equation (4) by dividing by |n|. This means that

For these three Fréederickz transitions, continuum the scaled temperature used in the Metropolis scheme
theory, in the absence of director � uctuations, predicts is given by
a critical value of the external � eld, given by [1] T * ; kBT / |n| 5 3kBT /(L|K1 Õ 3K2 Õ K3 |) (16)

B2
c,i 5 (p/d )2m0K

i
/DxÄ , (10) which reduces to equation (6) in the limit of the spherical

approximation. We have studied samples of dimension
where the index i refers to splay (1), twist (2) and 10 Ö 10 Ö N

z
, with N

z
of 12 and 16, where the � rst and

bend (3). The � eld-induced deformation has its maximum last plane of the lattice contain the directors at the
in the middle of the cell, where the eŒect of the surfaces surfaces of the cell. These have a de� nite orientation
is weakest, and the deformation angle, d, is symmetric which is not changed during the Monte Carlo chain,
on going across the cell, where d is the angle between while there are periodic boundary conditions in the x
the director and the direction of the easy axis in the and y directions. The thickness of the cell is given by
surfaces. The deformation angle in the middle of the cell, (N

z
Õ 1)L. At � rst sight this expression for the thickness

dmax , is clearly zero below the critical � eld (B < B
c,i

), may seem unexpected since the sample appears to con-
tain N

z
unit cells between the two surfaces which wouldwhile for B > B

c,i
the following expression, relating dmax
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773Simulation of elastic behaviour of NL Cs

give a thickness of N
z
L. However, for the two unit cells 4. Results and discussion

To determine the expansion coe� cients in the paircontaining the director at the surfaces only half of their
dimension is to be included in the cell thickness; in other potential we have used the elastic constants of 4,4 ¾ -

dimethoxyazoxybenzen e (or p-azoxyanisole, PAA). Thewords the perfectly pinned directions are exactly at the
surfaces. For the three Fréedericksz experiments and for values are K1 5 7.0 Ö 10 Õ 12 N, K2 5 4.3 Ö 10 Õ 12 N and

K3 5 17.0 Ö 10 Õ 12 N at 120 ß C. This parametrization hasthe Schadt–Helfrich cell, the critical � elds have been
determined by running simulations for diŒerent values already been studied by Romano [18], where the model

potential has been used to investigate the bulk propertiesof the applied � eld. For each case two sets of simulations
have been run in cascade, equilibrating each con� guration of the system at a molecular level. In particular the

scaled nematic–isotropic transition temperature, T *
NI ,starting from the � nal con� guration of the previous

production run. The � rst set has an increasing � eld was found to be 1.368. To test the range of validity of
the model potential for the elastic behaviour we havestrength parameter, c, and the second has a decreasing

� eld strength, in order to check for any hysteresis about chosen three diŒerent scaled temperatures. One of these
is T * of 7.8981 Ö 10 Õ 5, corresponding to a unit cellthe critical � eld. In all cases the two sets of results

are practically indistinguishable. Each simulation took dimension, L, of 9 mm, and at this low value we expect
the model potential to give results in quantitative agree-typically 200 000 cycles for the equilibration as well as

for the production stage. The Markov chain of con- ment with continuum theory, since the simulation corre-
sponds to a straightforward minimization of the energy.� gurations is generated as in [16]: each cycle consists

of a random orientational displacement of N randomly An apparently similar value of the scaled temperature
was also selected by Gruhn and Hess [9]; however anchosen sites, followed by N/2 random orientational dis-

placements of each site of even parity and then N/2 exact comparison with their simulations is not straight-
forward because they used a rectangular unit cell whichrandom orientational displacements of each site of odd

parity; the parity of a site is de� ned as the parity of the contrasts with the cubic unit cell used here. For real
nematic cells whose thickness is of the order of a fewsum of its coordinates (i, j, k) representing the (x, y, z)

position of the site in the three-dimensional cubic lattice. microns, L should be of the order of 10 Õ 1 mm for a
lattice with N

z
between 12 and 16. In fact we have usedThe Barker–Watts technique [22] has been used to change

the director orientation. The ratio between accepted and such a unit cell dimension namely 0.07108 mm which
corresponds to a scaled temperature of 0.01. In this caserejected con� gurations during the Monte Carlo sampling

was kept between 0.48 and 0.52, by changing the maximum the thickness of the simulated samples is of the order of
a micron and we expect the model potential at this scaledrotational displacements allowed.

The property used to characterize the transitions is temperature to be in almost quantitative agreement with
the continuum theory predictions. Finally, we have setthe orientation of the director in each xy plane of the

lattice. Accordingly, for each plane of the lattice parallel the scaled temperature, T *, to 0.1, corresponding to a
size for the unit cell of the lattice of 0.007108 mm whereto the surface we have calculated the instantaneous

ordering tensor Q(k), where k represents the position in we expect to � nd some deviations between the results
of the simulations and continuum theory because ofthe lattice along the z coordinate, and averaged Q (k)

over the number of con� gurations generated in the pro- the greater importance of director � uctuations. A similar
value of the scaled temperature is used in the simulationduction stage, as well as over the number of sites in each

plane. The averaged ordering tensor QE (k) was then of disclinations described by Chiccoli et al. [11].
The � rst set of simulations at a scaled temperaturediagonalized to obtain the order parameter for the

directors, in each plane, Pd
2 (k) and the director com- of 7.8981 Ö 10 Õ 5 has been performed with a lattice of

10 Ö 10 Ö 16. The value of the deformation angle dmax inponents n
x
(k), n

y
(k) and n

z
(k). This appoach is valid

only in the limit of a narrow distribution of directors, the middle of the lattice, obtained from the simulations,
was calculated by a cubic spline interpolation of thei.e. a large order parameter Pd

2 (k). If the orientational
� uctuations are relatively large, then it would be more values of the angles at the various positions k along

the z axis of the lattice. In � gure 1 (a) we report theappropriate to diagonalize the Q tensor at each step,
in order to follow possible changes in the director dependence of dmax on c for the three Fréedericksz

transitions investigated, as open symbols for decreasingorientation during the production stage. Such motions
do not take place for the systems we have studied. This � eld strength and solid symbols for increasing � eld

strength. The step Dc in the � eld strength about thehas been checked by running a sequence of simulations
for the twist Fréedericksz transition, � rst 10 runs of 1000 transition point is 0.0001 for the twist geometry, 0.0002

for the splay geometry and 0.0005 for the bend geometry,cycles each, then 10 runs of 10 000 cycles each and
� nally a run of 100 000 cycles; all gave the same results corresponding to a relative step Dc/cc of c. 0.5% in each

of the three cases. The results for the transitions showfor the director distribution within the simulation error.
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774 P. J. Le Masurier et al.

to its limiting value of 90 ß although clearly at diŒerent
rates for the three Fréedericksz transitions. We can com-
pare the results obtained from the simulations with the
predictions of continuum theory without needing to intro-
duce any adjustable parameters. By using equation (10),
and taking account of the scaling of the potential energy
by |n|, the critical � eld strength parameters predicted by
continuum theory are

cc,i
5 3K

i
p2 /[ |K1 Õ 3K2 Õ K3 | (N

z
Õ 1)2] (17)

with i 5 1, 2 and 3 for the splay, twist and bend transitions,
respectively. A similar expression can be derived from
equation (15) for the critical � eld strength parameter
cc,SH for the Schadt–Helfrich cell. The predicted depend-
ence of the angle dmax on the � eld strength parameter can
be obtained from equations (11) and (14) by replacing
B with c1/2 and Bc with the appropriate c1/2

c . For this
case, equation (17), after the appropriate substitutions,
gives cc,1 5 0.04023, cc,2 5 0.02471 and cc,3 5 0.09769.
The solid lines in � gure 1 (a) show the predictions of
dmax obtained in this way. It appears that there is an
essentially quantitative agreement between the analytical
solutions and the results of the simulations. In � gure 1 (b)
the expanded critical regions for the three experiments
are reported and the agreement with the prediction of
continuum theory is seen to be very good. The largest
error in the values of the critical � eld strength parameters
cc,i

occurs for the bend deformation and is estimated to
be less than 0.4%. This agreement between the results
of the Monte Carlo simulations and continuum theory
is especially impressive as the theory does not contain
any adjustable parameters. It clearly demonstrates that
the Monte Carlo methodology provides a reliable route
to the director con� guration which minimizes the elastic
energy.

We have also investigated the dependence of the criticalFigure 1. (a) The dependence of the deformation angle,
dmax , on the � eld strength parameter, c, for a lattice � eld on the thickness of the sample by repeating the
of 10 Ö 10 Ö 16 and at a scaled temperature, T *, of simulations for a thinner box with N

z
of 12. In � gure 2

7.8981 Ö 10 Õ 5 ; (circles) splay, (squares) twist, (triangles)
we show the results of the simulations together with the

bend Fréedericksz experiments. The solid symbols represent
continuum theory predictions given by equations (11)a set of simulations for increasing � eld strength while the
and (14). Again quantitative agreement is obtained foropen symbols are for decreasing � eld strength. The solid

lines are the analytical solutions given by continuum the critical � eld strength parameters, although there is
theory for the three Fréedericksz experiments obtained a slightly worse agreement for large deformations in the
from equations (11) and (14). (b) The same results as in

case of the twist and bend transitions. This is almost
(a) but on an expanded scale about the critical � elds.

certainly due to the approximation of small displace-
ments between two interacting directors on which the
model potential and the continuum theory are based.no hysteresis within the error of the simulations. They

also show, as expected, that as the � eld strength para- As the lattice size is reduced the amount of deformation
between two consecutive planes of the lattice, for themeter, c, is increased, so the maximum displacement angle

remains at zero until a critical value is reached when same total distortion in the middle of the cell, necessarily
becomes larger.dmax increases continuously, corresponding to a second

order transition. The continuous nature of this is clearly For this smaller box size, we have also investigated
the Schadt–Helfrich cell. In � gure 3 (a) we report theapparent from the results shown on an expanded scale

in � gure 1 (b). The angle dmax then increases, tending azimuthal (a) and polar (b) angles of the director in each

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
0
7
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



775Simulation of elastic behaviour of NL Cs

Figure 2. (a) The dependence of the deformation angle,
dmax , on the � eld strength parameter, c, for a lattice
of 10 Ö 10 Ö 12 and at a scaled temperature, T *, of
7.8981 Ö 10 Õ 5 ; (circles) splay, (squares) twist, (triangles)
bend Fréedericksz experiments. The solid symbols represents
a set of simulations for increasing � eld strength while the
open symbols are for decreasing � eld strength. The solid
lines are the analytical solutions given by continuum
theory for the three Fréedericksz experiments obtained
from equations (11) and (14).

plane k for two diŒerent values of the � eld strength
parameter, one below (c 5 0.0950) and the other well
above (c 5 0.3500) the critical � eld (cc,SH 5 0.0960 ).
Below the critical � eld the polar angle is 90 ß and the
azimuthal angle varies linearly across the cell showing
that the helical distribution of the director is unperturbed
by the � eld. Above the critical � eld the polar angle now

Figure 3. (a) The orientation of the director in the Schadt–
varies signi� cantly across the cell with the maximum Helfrich cell as a function of the position k along the z
displacement from the original orientation being about coordinate for a 10 Ö 10 Ö 12 lattice at a scaled temper-

ature, T *, of 7.8981 Ö 10 Õ 5 ; (squares) azimuthal, a, and75 ß . Although there is a large variation in the polar
(circles) polar, b, angles. The open symbols indicate theangle on going far above the critical � eld, the deviation
results for a � eld (c 5 0.095) below the critical value and

of the azimuthal angle from its linear dependence is
the solid symbols for a � eld (c 5 0.350) well above the

relatively small. The helical structure of the director would, critical value, where the critical value for the � eld strength
therefore, appear to be largely intact. In � gure 3 (b) the parameter, cc,SH , predicted by equation (15), is 0.09724.

The critical value estimated from the simulations isdeformation angle in the middle of the lattice, dmax ,
0.0960 Ô 0.0005. (b) The dependence of the deformationwhich is given simply as the deviation from p/2 of the
angle in the middle of the Schadt–Helfrich cell, dmax , on

polar angle of the director, is reported as a function of
the � eld strength parameter c. The solid symbols are for

the � eld strength parameter c. The critical � eld, cc,SH , increasing c and the open symbols for decreasing c.
estimated from the simulated results is 0.0960 Ô 0.0005.
This compares extremely well with the predicted value
of 0.0972 obtained from equation (15). lower scaled temperature of 7.8981 Ö 10 Õ 5 (see � gure 2).

The solid lines show the continuum theory predictionsIn � gure 4 we report the results of the simulations for
the � eld dependence of the maximum displacement angle and, as we can see, the agreement in the vicinity of the

critical � elds is still almost quantitative. Far above theas a function of the � eld strength parameter at a scaled
temperature T * of 0.01 and a lattice of 10 Ö 10 Ö 12 for critical � elds the maximum displacements obtained from

the simulations are slightly in excess of those predictedthe Fréedericksz experiments; these are comparable to
the results obtained for the same system size but at the by continuum theory for the twist and bend deformations
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776 P. J. Le Masurier et al.

Figure 5. The dependence of the deformation angle, dmax , onFigure 4. The dependence of the deformation angle, dmax , on
the � eld strength parameter, c, for a lattice of 10 Ö 10 Ö 12the � eld strength parameter, c, for a lattice of 10 Ö 10 Ö 12
and at a scaled temperature, T *, of 0.1; (circles) splay,and a scaled temperature, T *, of 0.01; (circles) splay,
(squares) twist, (triangles) bend Fréedericksz experiments.(squares) twist, (triangles) bend Fréedericksz experiments.
The solid symbols represents a set of simulations forSolid symbols represents a set of simulations for increasing
increasing � eld strength while the open symbols are for� eld strength while the open symbols are for decreasing
decreasing � eld strength. The solid lines are the analytical� eld strength. The solid lines are the analytical solutions
solutions predicted by continuum theory for the threegiven by continuum theory for the three Fréedericksz
Fréedericksz experiments obtained from equations (11)experiments obtained from equations (11) and (14).
and (14).

although the agreement for the splay is quite good.
Similar agreement was found for the much lower scaled of the critical � eld strength parameters cc,i

to higher
values for a scaled temperature of 0.10, can also betemperature and so it would seem that increasing T * to

0.01 has little in� uence on the elastic behaviour of the interpreted as a result of the larger � uctuations in the
orientation of the directors. In fact, they reduce themodel, presumably because the director � uctuations are

still relatively small. eŒective anisotropy in the coupling tensor of the nematic
director with the external � eld, so that a higher � eld isIn order to see how high the scaled temperature used

in the Monte Carlo simulation can be before director required, for the same value of the elastic constants, in
order to induce the transition to a deformed state. We� uctuations have a signi� cant in� uence on the results,

we have studied the same lattice size (10 Ö 10 Ö 12) at notice that the amplitude of these � uctuations is con-
sistent with the values of the maximum allowed rotationalT * of 0.10. As we have seen this would correspond to a

unit cell size only ten times larger than the molecular displacement, Dwmax , observed in the simulations, which
is 0.4 ß at a scaled temperature of 7.8981 Ö 10 Õ 5, risinglength of PAA [16]. The dependence of the angle in

the middle of the box, dmax is shown as a function of the to 10 ß at T * of 0.10. In addition the director � uctuations
are similar to, but slightly smaller than those estimated� eld strength parameter in � gure 5 together with the

continuum theory predictions. We can see that there is for PAA from the asymmetry in the ESR lineshape of a
transition metal complex dissolved in its nematic phasea clear shift of the critical � elds to higher values at this

higher scaled temperature. For T * of 0.10 there are small at the same absolute temperature [23].
Finally, a comment about the size of the unit cell ofbut signi� cant director � uctuations in each xy plane of

the lattice, which give a director order parameter Pd
2 the lattice at the various scaled temperatures can be

made. In a recent experimental study the coherencethat typically is as small as 0.95 Ô 0.01, while, for T * of
7.8981 Ö 10 Õ 5, the director order parameter Pd

2 is found length, j, for the director � uctuations in the nematic
phase of 4-butyl-4 ¾ -cyanophenylcyclohexan e has beento be signi� cantly larger at 0.99997 Ô 0.00001. The larger

director � uctuations at the higher scaled temperature measured from the NMR spin-lattice relaxometry pro� le
at low Larmor frequencies [24]. The coherence lengthare almost certainly responsible for the quantitative

diŒerence in behaviour of the model potential in com- is related to the dimension of the unit cell of the lattice
in our Monte Carlo simulations since both representparison with the predictions of continuum theory which

does not allow for such � uctuations. Moreover, the shift the minimum distance over which the orientation of the
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777Simulation of elastic behaviour of NL Cs

director is constant. The authors have found that j exercised in the choice of the system size and scaled tem-
perature the potential can be used with some con� dencevaries from c. 200 nm at 41 ß C, close to the nematic–

isotropic transition of the sample, up to a maximum of to explore the director distribution in more complex
geometries including those which result in disclinations.1 mm at 29 ß C, close to the smectic–nematic transition.

It is, however, at least one order of magnitude smaller In addition the use of the model at relatively high scaled
temperatures allows the in� uence of director � uctuationsthan the dimension of the unit cell of the lattice at the

lowest scaled temperature that we have investigated of on the elastic behaviour of a nematic to be readily
included.7.8981 Ö 10 Õ 5. In contrast, the dimension of the unit cell

for the other two scaled temperatures studied, namely
T * of 0.01 and 0.10, are of the same order of magnitude The authors wish to thank Dr S. Romano (Università
as the coherence length determined experimentally for di Pavia) for useful discussions. This work was supported
the nematic phase of 4-butyl-4 ¾ -cyanophenylcyclohexane . by the EC TMR Contract No. FMRX-CT97-0121.
This observation provides support for the use of a Monte
Carlo simulation in order to include thermal � uctuations Appendix
when studying director distributions. The S-functions constitute a complete set of basis

functions spanning the space V de� ned by the orien-
5. Conclusions tational coordinates of triplets of unit vectors: V ;

We have explored the validity of the pairwise additive (a1 , b1 , a2 , b2 , a3 , b3 ) where a and b are the azimuthal
potential model developed by Gruhn and Hess [9] and and polar angles de� ning the orientation of the unit
parametrized by Romano [18] to describe the elastic vector in a laboratory � xed cartesian frame. They are
behaviour of nematics for which the three elastic con- de� ned as [19]:
stants are not equal. To do this we have simulated,
using the Metropolis Monte Carlo algorithm, the three S

L1 ,L2,J
(V) 5 (i )L1 Õ L2 Õ J �

M1M2M
A L 1 L 2 J

M1 M2 MBFréedericksz transitions for two system sizes and at
three scaled temperatures. For the larger system where

Ö C
L1M1

(a1 , b1 )C
L2M2

(a2 , b2 )C
JM

(a3 , b3 ),the director gradients are small, and a very low scaled
temperature where the director � uctuations are negligible, (A1)
there is a very good agreement between the simulated

where C
LM

(a, b) is a modi� ed spherical harmonic andresults and the predictions of the continuum theory, not
only for the critical � elds but also for the deformation
angles at the centre of the cell. As the scaled temperature A L 1 L 2 J

M1 M2 MBis increased so the thermal � uctuations of the director
grow and the agreement with continuum theory pre- is a 3j symbol. The mapping of equation (1) onto the
dictions is less quantitative, presumably because the expansion of equation (3) gives:
theoretical calculations ignore such director � uctuations.

W
jk 5 Q202 S202 1 Q022 S022 1 Q220S220 1 Q222 S222At the highest scaled temperature, the critical � elds

are signi� cantly diŒerent from those of the continuum 1 Q224 S224 1 Q422 S422 1 Q242 S242 (A2)
theory, as might be expected. An alternative view of this

withfailure is that the dimensions of the unit cell of the lattice
at the highest scaled temperature are equivalent to just
a few molecular dimensions so that the director gradients
are too large for continuum theory to be applicable.

The critical � elds for the Fréedericksz transitions depend
on a single elastic constant and so to test the model G

Q202 5 Q022 5 (L/3 Ó 5) (K1 Õ 5K2 1 4K3 )

Q220 5 ( Ó 5L/21)(2K1 Õ 7K2 Õ 23K3 )

Q222 5 ( Ó 10L/3 Ó 7) ( Õ 5K1 1 7K2 Õ 2K3 )

Q224 5 0

Q422 5 Q242 5 (6L/ Ó 70)(K1 Õ K3 ).

(A3)
potential in a more complicated situation we have
simulated the elastic behaviour of the Schadt–Helfrich
twist nematic cell. At the low scaled temperature used
there is a very good agreement between the observed
critical � eld and that obtained from continuum theory. In this expansion for the elastic energy the ranks L 1

and L 2 have to be even because of the director symmetry;It would seem, therefore, that the Gruhn–Hess
potential, parametrized by Romano, with its assump- in addition the values adopted by J are restricted by

those of L 1 and L 2 to the range |L 1 Õ L 2 | to L 1 1 L 2 . Wetion pairwise additivity provides a good model with
which to study the elastic behaviour of nematics having see, therefore, that the Gruhn–Hess model potential

includes almost all of the terms of the S-functionthree diŒerent elastic constants. Provided some care is
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